GE模塊DS3800HCVA1J1H
GE模塊DS3800HCVA1J1H
逆變器采用微處理器、適當的檢測和反饋及正確的算法,可以為電網提供各種服務,而不僅僅是存儲和釋放電能。一個例子是以電壓支持、頻率調節和諧波降低來保持電力質量。分布式能源可以減少輸電和配電網絡的負荷,因為電能在靠近發電的地方使用。這可以減少電網的緊張和擁擠,甚至推遲電力線的升級。
當大量的電力通過逆變器時,交流和直流電源之間的轉換必須非常高效。事實上,商用逆變器的峰值效率在96-98%。但電網運營商想要更高的能效,特別是在公用事業規模上,因為能效的微小變化仍意味著大量的電力。
為了達到這些能效水平,功率器件必須具有非常低的損耗。如今,IGBT已成為這些應用的主力開關。但IGBT的傳導電流為幾百安培,阻斷幾千伏特的電壓,它是采用類似于制造手機和數據中心高性能計算芯片所使用的工藝,由硅制成的。
然而,新材料有望實現更高的性能、更高的能效和更高的可靠性。具體地說,碳化硅(SiC)是未來的材料。SiC功率電子器件比類似的硅器件具有更低的傳導和開關損耗。過渡的階段涉及低級二極管,如圖1所示,該二極管反向并聯連接至IGBT。將硅二極管替換為SiC二極管可降低損耗并減少開關期間的過沖,從而減少了逆變器上的應力。盡管SiC二極管比硅二極管更昂貴,但較小的散熱器和系統尺寸可降低整體系統成本。
SiCMOSFET是過渡的下一階段。SiCMOSFET的開關速度比硅IGBT快得多,因此它們用于太陽能發電系統的升壓級帶來更大的優勢。通常,使用DC-DC轉換器增加太陽能電池板的輸出電壓。SiCMOSFET可更快地開關,因而減小了升壓級中昂貴的無源器件如電感器的尺寸,并提高了效率。
安森美半導體提供各種IGBT、SiC二極管和SiCMOSFET,可滿足各種逆變器對電壓和電流的要求。的是電源模塊,將許多不同的電源開關和二極管封裝在一起,以實現小尺寸,易于設計和高效散熱。除主要的功率電子器件外,安森美半導體還提供門極驅動器、伽伐尼隔離和高性能運算放大器使系統完整。
隨著可再生能源和儲能技術的改進和成本的下降,電網的“逆變化”繼續以越來越快的速度進行。除了減少碳排放和污染外,逆變器還支持更靈活和更具參與性的電網,使消費者和生產者之間的界限變得模糊。電力公司正確的控制和協調,可提高電力質量,降低升級成本,為用戶提供更可靠服務。電力電子是使我們關鍵基礎設施得以更新的關鍵使能技術。