高頻介電常數介質損耗測試儀型號及參數:
項目/型號 | ZJD-B | ZJD-A | ZJD-C |
信號源 | DDS數字合成信號 | ||
頻率范圍 | 10KHZ-70MHZ | 10KHZ-110MHZ | 100KHZ-160MHZ |
信號源頻率覆蓋比 | 7000:1 | 11000:1 | 16000:1 |
采樣精度 | 11BIT | 12BIT | |
信號源頻率精度 | 3×10-5 ±1個字,6位有效數 | ||
Q值測量范圍 | 1~1000自動/手動量程 | ||
Q值量程分檔 | 30、100、300、1000、自動換檔或手動換檔 | ||
Q分辨率 | 4位有效數,分辨率0.1 | ||
Q測量工作誤差 | <5% | ||
電感測量范圍 | 1nH~8.4H,;分辨率0.1 | 1nH~140mH;分辨率0.1 | |
電感測量誤差 | <3% | ||
電容直接測量范圍 | 1pF~2.5uF | 1pF~25uF | |
調諧電容誤差分辨率 | ±1pF或<1% | ||
主電容調節范圍 | 30~540pF | 17~240pF | |
諧振點搜索 | 自動掃描 |
介質損耗:絕緣材料在電場作用下,由于介質電導和介質極化的滯后效應,在其內部引起的能量損耗。也叫介質損失,簡稱介損。在交變電場作用下,電介質內流過的電流相量和電壓相量之間的夾角(功率因數角Φ)的余角δ稱為介質損耗角。
概念:
電介質在外電場作用下,其內部會有發熱現象,這說明有部分電能已轉化為熱能耗散掉,電介質在電場作用下,在單位時間內因發熱而消耗的能量稱為電介質的損耗功率,或簡稱介質損耗(diclectric loss)。介質損耗是應用于交流電場中電介質的重要品質指標之一。介質損耗不但消耗了電能,而且使元件發熱影響其正常工作。如果介電損耗較大,甚至會引起介質的過熱而絕緣破壞,所以從這種意義上講,介質損耗越小越好。
形式:
各種不同形式的損耗是綜合起作用的。由于介質損耗的原因是多方面的,所以介質損耗的形式也是多種多樣的。介電損耗主要有以下形式:
1)漏導損耗
漏導損耗又稱電導損耗。實際使用中的絕緣材料都不是完善的理想的電介質,在外電場的作用下,總有一些帶電粒子會發生移動而引起微弱的電流,這種微小電流稱為漏導電流,漏導電流流經介質時使介質發熱而損耗了電能。這種因電導而引起的介質損耗稱為“漏導損耗”。由于實際的電介質總存在一些缺陷,或多或少存在一些帶電粒子或空位,因此介質不論在直流電場或交變電場作用下都會發生漏導損耗。
2)極化損耗
在介質發生緩慢極化時(松弛極化、空間電荷極化等),帶電粒子在電場力的影響下因克服熱運動而引起的能量損耗。
一些介質在電場極化時也會產生損耗,這種損耗一般稱極化損耗。位移極化從建立極化到其穩定所需時間很短(約為10-16~10-12s),這在無線電頻率(5×1012Hz 以下)范圍均可認為是極短的,因此基本上不消耗能量。其他緩慢極化(例如松弛極化、空間電荷極化等)在外電場作用下,需經過較長時間(10-10s或更長)才達到穩定狀態,因此會引起能量的損耗。
若外加頻率較低,介質中所有的極化都能全跟上外電場變化,則不產生極化損耗。若外加頻率較高時,介質中的極化跟不上外電場變化,于是產生極化損耗。
3)電離損耗
電離損耗(又稱游離損耗)是由氣體引起的,含有氣孔的固體介質在外加電場強度超過氣孔氣體電離所需要的電場強度時,由于氣體的電離吸收能量而造成指耗,這種損耗稱為電離損耗。
4)結構損耗
在高頻電場和低溫下,有一類與介質內鄰結構的緊密度密切相關的介質損耗稱為結構損耗。這類損耗與溫度關系不大,耗功隨頻率升高而增大。
試驗表明結構緊密的晶體成玻璃體的結構損耗都很小,但是當某此原因(如雜質的摻入、試樣經淬火急冷的熱處理等)使它的內部結構松散后。其結構耗就會大大升高。
5)宏觀結構不均勻性的介質損耗
工程介質材料大多數是不均勻介質。例如陶瓷材料就是如此,它通常包含有晶相、玻璃相和氣相,各相在介質中是統計分布口。由于各相的介電性不同,有可能在兩相間積聚了較多的自由電荷使介質的電場分布不均勻,造成局部有較高的電場強度而引起了較高的損耗。但作為電介質整體來看,整個電介質的介質損耗必然介于損耗最大的一相和損耗最小的一相之間。
表征:
電介質在恒定電場作用下,介質損耗的功率為
W=U2/R=(Ed)2S/ρd=σE2Sd
定義單位體積的介質損耗為介質損耗率為
ω=σE2
在交變電場作用下,電位移D與電場強度E均變為復數矢量,此時介電常數也變成復數,其虛部就表示了電介質中能量損耗的大小。
如圖《D,E,J之間的相位關系圖》所示,從電路觀點來看,電介質中的電流密度為
J=dD/dt=d(εE)/dt=Jτ+iJe
式中Jτ與E同相位。稱為有功電流密度,導致能量損耗;Je,相比較E超前90°,稱為無功電流密度。
定義
tanδ=Jτ/Je=ε〞/εˊ
式中,δ稱為損耗角,tanδ稱為損耗角正切值。
損耗角正切表示為獲得給定的存儲電荷要消耗的能量的大小,是電介質作為絕緣材料使用時的重要評價參數。為了減少介質損耗,希望材料具有較小的介電常數和更小的損耗角正切。損耗因素的倒數Q=(tanδ)-1在高頻絕緣應用條件下稱為電介質的品質因素,希望它的值要高。
工程材料:
離子晶體的損耗
離子晶體的介質損耗與其結構的緊密程度有關。
緊密結構的晶體離子都排列很有規則,鍵強度比較大,如α-Al2O3、鎂橄欖石晶體等,在外電場作用下很難發生離子松弛極化,只有電子式和離子式的位移極化,所以無極化損耗,僅有的一點損耗是由漏導引起的(包括本質電導和少量雜質引起的雜質電導)。這類晶體的介質損耗功率與頻率無關,損耗角正切隨頻率的升高而降低。因此,以這類晶體為主晶相的陶瓷往往用在高頻場合。如剛玉瓷、滑石瓷、金紅石瓷、鎂橄欖石瓷等
結構松散的離子晶體,如莫來石(3Al2O3·2SiO2)、董青石(2MgO·2Al2O3·5SiO2)等,其內部有較大的空隙或晶格畸變,含有缺陷和較多的雜質,離子的活動范圍擴大。在外電場作用下,晶體中的弱聯系離子有可能貫穿電極運動,產生電導打耗。弱聯系離子也可能在一定范圍內來回運動,形成熱離子松弛,出現極化損耗。所以這類晶體的介質損耗較大,由這類品體作主晶相的陶瓷材料不適用于高頻,只能應用于低頻場合。
玻璃的損耗
復雜玻璃中的介質損耗主要包括三個部分:電導耗、松弛損耗和結構損耗。哪一種損耗占優勢,取決于外界因素溫度和電場頻率。高頻和高溫下,電導損耗占優勢:在高頻下,主要的是由弱聯系離子在有限范圍內移動造成的松弛損耗:在高頻和低溫下,主要是結構損耗,其損耗機理還不清楚,可能與結構的緊密程度有關。一般來說,簡單玻璃的損耗是很小的,這是因為簡單玻璃中的“分子”接近規則的排列,結構緊密,沒有弱聯系的松弛離子。在純玻璃中加入堿金屬化物后,介質損耗大大增加,并且隨著加入量的增大按指數規律增大。這是因為堿性氧化物進入玻璃的點陣結構后,使離子所在處點陣受到破壞,結構變得松散,離子活動性增大,造成電導損耗和松弛損耗增加。
陶瓷材料的損耗
陶瓷材料的介質損耗主要來源于電導損耗、松弛質點的極化損耗和結構損耗。此外,表面氣孔吸附水分、油污及灰塵等造成的表面電導也會引起較大的損耗。
在結構緊密的陶瓷中,介質損耗主要來源于玻璃相。為了改善某些陶瓷的工藝性能,往往在配方中引入此易熔物質(如黏土),形成玻璃相,這樣就使損耗增大。如滑石瓷、尖晶石瓷隨黏土含量增大,介質損耗也增大。因面一般高頻瓷,如氧化鋁瓷、金紅石等很少含有玻璃相。大多數電陶瓷的離子松弛極化損耗較大,主要的原因是:主晶相結構松散,生成了缺固濟體、多品型轉變等。
高分子材料的損耗
高分子聚合物電介質按單體單元偶極矩的大小可分為極性和非極性兩類。一般地,偶極矩在0~0.5D(德拜)范圍內的是非極性高聚物;偶極矩在0.5D以上的是極性高聚物。非極性高聚物具有較低的介電常數和介質損耗,其介電常數約為2,介質損耗小于10-4;極性高聚物則具有較高的介電常數和介質損耗,并且極性愈大,這兩個值愈高。
高聚物的交聯通常能阻礙極性基團的取向,因此熱固性高聚物的介電常數和介質損耗均隨交聯度的提高而下降。酚醛樹脂就是典型的例子,雖然這種高聚物的極性很強,但只要固化比較全,它的介質損耗就不高。相反,支化使分子鏈間作用力減弱,分子鏈活動能力增強,介電常數和介質損耗均增大。
高聚物的凝聚態結構及力學狀態對介電性景響也很大。結品能抑制鏈段上偶極矩的取向極化,因此高聚物的介質損耗隨結晶度升高而下降。當高聚物結晶度大于70%時,鏈段上的偶極的極化有時全被抑制,介電性能可降至低值,同樣的道理,非晶態高聚物在玻璃態下比在高彈態下具有更低的介質損耗。此外,高聚物中的增塑利、雜質等對介電性能也有很大景響。
高頻介電常數介質損耗測試儀試驗條件:
1、試樣表面應清潔、平滑,無裂紋、氣泡和雜質等,試樣表面應用蘸有無水乙醇的布擦洗。
2、試樣應在標準實驗室溫度及濕度下至少調節24h。
3、當試樣處理有特殊要求時,可按其產品標準規定的進行。
測試意義:
1、介電常數——北京智德創新檢測儀器絕緣材料通常以兩種不同方式來使用,即(1)用于固定電學網絡部件,同時讓其彼此以及與地面絕緣;(2)用于起到某一電容器的電介質作用。在第一種應用中,通常要求固定的電容盡可能小,同時具有可接受且一致的機械,化學和耐熱性能。因此要求電容率具有一個低值。在第二種應用中,要求電容率具有一個高值,以使得電容器能夠在外型上能盡可能小。有時使用電容率的中間值來評估在導體邊緣或末端的應力,以將交流電暈降至最小。
2、交流損耗——對于這兩種場合(作為電學絕緣材料和作為電容器電介質),交流損耗通常必須是比較小的,以減小材料的加熱,同時將其對網絡剩余部分的影響降至最小。在高頻率應用場合,特別要求損耗指數具有一個低值,因為對于某一給定的損耗指數,電介質損耗直接隨著頻率而增大。在某些電介質結構中,例如試驗用終止襯套和電纜所用的電介質,通常電導增加可獲得損耗增大,這有時引入其來控制電壓梯度。在比較具有近似相同電容率的材料時或者在材料電容率基本保持恒定的條件下使用任何材料時,這可能有助于考慮耗散因子,功率因子,相位角或損耗角。
3、相關性——北京智德創新檢測儀器當獲得適當的相關性數據時,耗散因子或功率因子有助于顯示某一材料在其它方面的特征,例如電介質擊穿,濕分含量,固化程度和任何原因導致的破壞。然而,由于熱老化導致的破壞將不會影響耗散因子,除非材料隨后暴露在濕分中。當耗散因子的初始值非常重要的,耗散因子隨著老化發生的變化通常是及其顯著的。