橡塑介電常數介質損耗測試儀 特點:
雙掃描技術 - 測試頻率和調諧電容的雙掃描、自動調諧搜索功能。
雙測試要素輸入 - 測試頻率及調諧電容值皆可通過數字按鍵輸入。
雙數碼化調諧 - 數碼化頻率調諧,數碼化電容調諧。
自動化測量技術 -對測試件實施 Q 值、諧振點頻率和電容的自動測量。
全參數液晶顯示 – 數字顯示主調電容、電感、 Q 值、信號源頻率、諧振指針。
DDS 數字直接合成的信號源 -確保信源的高葆真,頻率的高精確、幅度的高穩定。
計算機自動修正技術和測試回路優化 —使測試回路 殘余電感減至低,治療 Q 讀數值在不同頻率時要加以修正的困惑。
介質損耗:絕緣材料在電場作用下,由于介質電導和介質極化的滯后效應,在其內部引起的能量損耗。也叫介質損失,簡稱介損。在交變電場作用下,電介質內流過的電流相量和電壓相量之間的夾角(功率因數角Φ)的余角δ稱為介質損耗角。
損耗因子也指耗損正切,是交流電被轉化為熱能的介電損耗(耗散的能量)的量度,一般情況下都期望耗損因子低些好 。
橡塑介電常數介質損耗測試儀 高分子材料的損耗
高分子聚合物電介質按單體單元偶極矩的大小可分為極性和非極性兩類。一般地,偶極矩在0~0.5D(德拜)范圍內的是非極性高聚物;偶極矩在0.5D以上的是極性高聚物。非極性高聚物具有較低的介電常數和介質損耗,其介電常數約為2,介質損耗小于10-4;極性高聚物則具有較高的介電常數和介質損耗,并且極性愈大,這兩個值愈高。
高聚物的交聯通常能阻礙極性基團的取向,因此熱固性高聚物的介電常數和介質損耗均隨交聯度的提高而下降。酚醛樹脂就是典型的例子,雖然這種高聚物的極性很強,但只要固化比較 ,它的介質損耗就不高。相反,支化使分子鏈間作用力減弱,分子鏈活動能力增強,介電常數和介質損耗均增大。
高聚物的凝聚態結構及力學狀態對介電性景響也很大。結品能抑制鏈段上偶極矩的取向極化,因此高聚物的介質損耗隨結晶度升高而下降。當高聚物結晶度大于70%時,鏈段上的偶極的極化有時 被抑制,介電性能可降至 值,同樣的道理,非晶態高聚物在玻璃態下比在高彈態下具有更低的介質損耗。此外,高聚物中的增塑利、雜質等對介電性能也有很大景響。
測量范圍及誤差
本電橋的環境溫度為20±5℃,相對濕度為30%-80%條件下,應滿足
下列表中的技術指示要求。
在Cn=100pF R4=3183.2(W)(即10K/π)時
測量項目 測量范圍 測量誤差
電容量Cx 40pF--20000pF ±0.5% Cx±2pF
介質損耗tgd 0~1 ±1.5%tgdx±0.0001
在Cn=100pF R4=318.3(W)(即1K/π)時
測量項目 測量范圍 測量誤差
電容量Cx 4pF--2000pF ±0.5% Cx±3pF
介質損耗tgd 0~0.1 ±1.5%tgdx±0.0001
結構損耗
在高頻電場和低溫下,有一類與介質內鄰結構的緊密度密切相關的介質損耗稱為結構損耗。這類損耗與溫度關系不大,耗功隨頻率升高而增大。
試驗表明結構緊密的晶體成玻璃體的結構損耗都很小,但是當某此原因(如雜質的摻入、試樣經淬火急冷的熱處理等)使它的內部結構松散后。其結構耗就會大大升高。
主要技術特性:
介質損耗和介電常數是各種電瓷、裝置瓷、電容器等陶瓷,還有復合材料等的一項重要的物理性質,通過測定介質損耗角正切tanδ及介電常數(ε),可進一步了解影響介質損耗和介電常數的各種因素,為提高材料的性能提供依據;儀器的基本原理是采用高頻諧振法,并提供了,通用、多用途、多量程的阻抗測試。它以單片計算機作為儀器的控制,測量核心采用了頻率數字鎖定,標準頻率測試點自動設定,諧振點自動搜索,Q值量程自動轉換,數值顯示等新技術,改進了調諧回路,使得調諧測試回路的殘余電感減至 ,并保留了原Q表中自動穩幅等技術,使得新儀器在使用時更為方便,測量值更為精確。儀器能在較高的測試頻率條件下,測量高頻電感或諧振回路的Q值,電感器的電感量和分布電容量,電容器的電容量和損耗角正切值,電工材料的高頻介質損耗,高頻回路有效并聯及串聯電阻,傳輸線的特性阻抗等。
安全措施
(1)高壓保護:試品短路、擊穿或高壓電流波動,能迅速切斷高壓輸出。
(2)CVT保護:設定自激電壓的過流點,一旦超出設置的電流值,儀器自動退出測量,不會損壞設備。
(3)接地檢測:儀器有接地檢測功能,未接地時不能升壓測量。
(4)防誤操作:具備防誤操作設計,能判別常見接線錯誤,安全報警。
(5)防“容升”:測量大容量試品時會出現電壓抬高的“容升”效應,儀器能自動跟蹤輸出電壓,保持試驗電壓恒定。
高頻西林電橋
這種電橋通常在中等的電壓下工作,是比較靈活方便的一種電橋;通常電容 CN是可變的(在高壓電橋中電容 CN通常是固定的),比較容易采用替代法。
由于不期望電容的影響隨頻率的增加而增加,因此仍可有效使用屏蔽和瓦格納接地線路。
介質損耗(dielectric loss )指的是絕緣材料在電場作用下,由于介質電導和介質極化的滯后效應,在其內部引起的能量損耗。也叫介質損失,簡稱介損。
介質損耗因數(dielectric loss factor)指的是衡量介質損耗程度的參數。
電介質的用途
電介質一般被用在兩個不同的方面:
用作電氣回路元件的支撐,并且使元件對地絕緣及元件之間相互絕緣;
用作電容器介質
標稱誤差
A(高頻) | C(工頻) | |
頻率范圍 | 25kHz~10MHz | 100kHz~10MHz |
固有誤差 | ≤5%±滿度值的2% | ≤5%±滿度值的2% |
工作誤差 | ≤7%±滿度值的2% | ≤7%±滿度值的2% |
頻率范圍 | 10MHz~60MHz | 10MHz~160MHz |
固有誤差 | ≤6%±滿度值的2% | ≤6%±滿度值的2% |
工作誤差 | ≤8%±滿度值的2% | ≤8%±滿度值的2% |
信號源頻率覆蓋范圍
A | C | |
頻率范圍 | 10kHz~60MHz | 0.1~160MHz |
CH1 | 10~99.9999kHz | 0.1~0.999999MHz |
CH2 | 100~999.999kHz | 1~9.99999MHz |
CH3 | 1~9.99999MHz | 10~99.9999MHz |
CH4 | 10~60MHz | 100~160MHz |
頻率指示誤差 | 3×10-5±1個字 |
GB/T 1409-2006標準規定了在15 Hz-300 MHz的頻率范圍內測量電容率、介質損耗因數的方法,并由此計算某些數值 ,如損耗指數。本標準中所敘述的某些方法,也能用于其他頻率下測量.
本標準適用于測量液體、易熔材料以及固體材料。測試結果與某些物理條件有關,例如頻率、溫度、
濕度,在特殊情況下也與電場強度有關有時在超過 1 000 V的電壓下試驗,則會引起一些與電容率和介質損耗因數無關的效應,對此不予論述.
低頻電橋
一般為高壓電橋,這不僅是由于靈敏度的緣故,也因為在低頻下正是高電壓技術特別對電介質損耗關注的問題。電容臂和測量臂兩者的阻抗大小在數量級上相差很多,結果,絕大部分電壓都施加在電容Cx和 C}上,使電壓分配不平衡 上面給出的電橋平衡條件只是當低壓元件對高壓元件屏蔽時才成立。同時,屏蔽必須接地,以保證平衡穩定。如圖A. 2所示。屏蔽與使用被保護的電容 C、和 C、是一致的,這個保護對于Ch來說是 的。
由于選擇不同的接地方法,實際上形成了兩類電橋。
主要配置:
a.測試主機一臺;
b.電感9只;
c.夾具一 套
工作條件
a. 環境溫度:0℃~+40℃; b.相對濕度:<80%; c.電源:220V±22V,50Hz±2.5Hz。
工程材料:
離子晶體的損耗
離子晶體的介質損耗與其結構的緊密程度有關。
緊密結構的晶體離子都排列很有規則,鍵強度比較大,如α-Al2O3、鎂橄欖石晶體等,在外電場作用下很難發生離子松弛極化,只有電子式和離子式的位移極化,所以無極化損耗,僅有的一點損耗是由漏導引起的(包括本質電導和少量雜質引起的雜質電導)。這類晶體的介質損耗功率與頻率無關,損耗角正切隨頻率的升高而降低。因此,以這類晶體為主晶相的陶瓷往往用在高頻場合。如剛玉瓷、滑石瓷、金紅石瓷、鎂橄欖石瓷等
結構松散的離子晶體,如莫來石(3Al2O3·2SiO2)、董青石(2MgO·2Al2O3·5SiO2)等,其內部有較大的空隙或晶格畸變,含有缺陷和較多的雜質,離子的活動范圍擴大。在外電場作用下,晶體中的弱聯系離子有可能貫穿電極運動,產生電導打耗。弱聯系離子也可能在一定范圍內來回運動,形成熱離子松弛,出現極化損耗。所以這類晶體的介質損耗較大,由這類品體作主晶相的陶瓷材料不適用于高頻,只能應用于低頻場合。
玻璃的損耗
復雜玻璃中的介質損耗主要包括三個部分:電導耗、松弛損耗和結構損耗。哪一種損耗占優勢,取決于外界因素溫度和電場頻率。高頻和高溫下,電導損耗占優勢:在高頻下,主要的是由弱聯系離子在有限范圍內移動造成的松弛損耗:在高頻和低溫下,主要是結構損耗,其損耗機理目前還不清楚,可能與結構的緊密程度有關。般來說,簡單玻璃的損耗是很小的,這是因為簡單玻璃中的“分子”接近規則的排列,結構緊密,沒有弱聯系的松弛離子。在純玻璃中加人堿金屬化物后。介質損耗大大增加,并且隨著加人量的增大按指數規律增大。這是因為堿性氧化物進人玻璃的點陣結構后,使離子所在處點陣受到破壞,結構變得松散,離子活動性增大,造成電導損耗和松弛損耗增加。
陶瓷材料的損耗
陶瓷材料的介質損耗主要來源于電導損耗、松弛質點的極化損耗和結構損耗。此外,表面氣孔吸附水分、油污及灰塵等造成的表面電導也會引起較大的損耗。
在結構緊密的陶瓷中,介質損耗主要來源于玻璃相。為了改善某些陶瓷的工藝性能,往往在配方中引人此易熔物質(如黏土),形成玻璃相,這樣就使損耗增大。如滑石瓷、尖晶石瓷隨黏土含量增大,介質損耗也增大。因面一般高頻瓷,如氧化鋁瓷、金紅石等很少含有玻璃相。大多數電陶瓷的離子松弛極化損耗較大,主要的原因是:主晶相結構松散,生成了缺固濟體、多品型轉變等。 [3]
高分子材料的損耗
高分子聚合物電介質按單體單元偶極矩的大小可分為極性和非極性兩類。一般地,偶極矩在0~0.5D(德拜)范圍內的是非極性高聚物;偶極矩在0.5D以上的是極性高聚物。非極性高聚物具有較低的介電常數和介質損耗,其介電常數約為2,介質損耗小于10-4;極性高聚物則具有較高的介電常數和介質損耗,并且極性愈大,這兩個值愈高。
高聚物的交聯通常能阻礙極性基團的取向,因此熱固性高聚物的介電常數和介質損耗均隨交聯度的提高而下降。酚醛樹脂就是典型的例子,雖然這種高聚物的極性很強,但只要固化比較 ,它的介質損耗就不高。相反,支化使分子鏈間作用力減弱,分子鏈活動能力增強,介電常數和介質損耗均增大。
高聚物的凝聚態結構及力學狀態對介電性景響也很大。結品能抑制鏈段上偶極矩的取向極化,因此高聚物的介質損耗隨結晶度升高而下降。當高聚物結晶度大于70%時,鏈段上的偶極的極化有時 被抑制,介電性能可降至 值,同樣的道理,非晶態高聚物在玻璃態下比在高彈態下具有更低的介質損耗。此外,高聚物中的增塑利、雜質等對介電性能也有很大景響。
試驗步驟
1 試樣的制備
試樣應從固體材料上截取,為了滿足要求,應按相關的標準方法的要求來制備。
應精確地測量厚度,使偏差在士(0. 2%士。.005 mm)以內,測量點應均勻地分布在試樣表面。必要時,應測其有效面積。
2 條件處理
條件處理應按相關規范規定進行。
3 測量
電氣測量按本標準或所使用的儀器(電橋)制造商推薦的標準及相應的方法進行。
在 1 MHz或更高頻率下,必須減小接線的電感對測量結果的影響。此時,可采用同軸接線系統(見圖 1所示),當用變電抗法測量時,應提供一個固定微調電容器。
試驗報告
試驗報告中應給出下列相關內容:
絕緣材料的型號名稱及種類、供貨形式、取樣方法、試樣的形狀及尺寸和取樣 日期(并注明試樣厚度和試樣在與電極接觸的表面進行處理的情況);
試樣條件處理的方法和處理時間;
電極裝置類型,若有加在試樣上的電極應注明其類型;
測量儀器;
試驗時的溫度和相對濕度以及試樣的溫度;
施加的電壓;
施加的頻率;
相對電容率ε(平均值);
介質損耗因數 tans(平均值);
試驗 日期 ;
相對電容率和介質損耗因數值以及由它們計算得到的值如損耗指數和損耗角,必要時,應給出與溫度和頻率的關系。