采用多波長(zhǎng)激光對(duì)外泌體、病毒等納米材料樣品中的所有顆粒進(jìn)行完整、詳細(xì)的分析。
外泌體、病毒和納米顆粒都具有較寬的粒徑分布,這使得傳統(tǒng)的納米顆粒追蹤分析 (NTA)儀無(wú)法準(zhǔn)確測(cè)量它們的粒徑分布。ViewSizer 3000的三個(gè)激光器可同時(shí)工作,可在同一樣品中收集各種尺寸的最準(zhǔn)確的分布和濃度信息。如果某一顆粒來(lái)自某一激光的散射光信號(hào)太強(qiáng)使檢測(cè)器達(dá)到飽和,軟件會(huì)自動(dòng)使用來(lái)自較低功率激光器的數(shù)據(jù)來(lái)確保獲得最準(zhǔn)確的尺寸和濃度信息。另一方面,當(dāng)來(lái)自某一激光的散射光信號(hào)太弱而無(wú)法檢測(cè)時(shí),軟件會(huì)使用更高功率激光的數(shù)據(jù)來(lái)準(zhǔn)確跟蹤顆粒。
交叉污染是所有分析中都存在的問(wèn)題。簡(jiǎn)化清潔意味著清潔。易于拆卸的樣品池可以拆卸以進(jìn)行快速、的清潔,從而獲得更好的數(shù)據(jù)。
擺脫傳統(tǒng) NTA 的限制
準(zhǔn)確靈敏的分析,無(wú)交叉污染
請(qǐng)聯(lián)系我們獲取更多信息
概要:
ViewSizer 3000 使用納米顆粒追蹤分析技術(shù) (NTA) 的進(jìn)展來(lái)準(zhǔn)確確定顆粒屬性!
粒徑測(cè)量范圍:10 nm- 15µm,具體范圍取決于樣品
ViewSizer 通過(guò)多激光納米顆粒追蹤分析技術(shù) (NTA) 得到顆粒粒徑及粒徑分布。多個(gè)激光器可分析同一樣品中各種不同尺寸的顆粒,分辨率更高。
濃度測(cè)量范圍:5 x 106 - 2 x 108 顆/mL
NTA 可用于對(duì)測(cè)量體積中的顆粒進(jìn)行計(jì)數(shù)。該測(cè)量方法可校正粒徑對(duì)有效測(cè)量體積的影響。
無(wú)交叉污染
樣品池可拆卸,拆卸后清洗更方便。拆卸、清潔和重新組裝比沖洗流通池更快。此外,配備多個(gè)樣品池可樣品測(cè)量通量,也可分配給共享(核心)設(shè)施中的各個(gè)小組。
ViewSizer 3000相關(guān)文獻(xiàn):
Biological characterization using protein crystal measurements | https://bioprocessintl.com/analytical/product-characterization/biological-characterization-using-protein-crystal-measurements/ |
A lipase-independent pathway of lipid release and immune modulation by adipocytes | /content/363/6430/989 |
Application of a novel new multispectral nanoparticle tracking technique | /article/10.1088/1361-6501/aab940/meta |
Biophysical characterization of polydisperse liposomal adjuvant formulations | https://doi.org/10.1016/j.bbrc.2020.05.156 |
Characterisation of particles in solution – a perspective on light scattering and comparative technologies | https://doi.org/10.1080/.2018.1517587 |
Cyclodextrin Reduces Intravenous Toxicity of a Model Compound | https://doi.org/10.1016/j.xphs.2019.01.004 |
Development and anti-Candida evaluation of the vaginal delivery system of amphotericin B nanosuspension-loaded thermogel | https://doi.org/10.1080/1061186X.2018.1434660 |
Electrochemical sensor based on F,N-doped carbon dots decorated laccase for detection of catechol | https://doi.org/10.1016/j.jelechem.2019.03.071 |
Light scattering by pure water and seawater: the depolarization ratio and its variation with salinity | https://doi.org/10.1364/AO.58.000991 |
Lipid Nanoparticle-Delivered Chemically Modified mRNA Restores Chloride Secretion in Cystic Fibrosis | https://doi.org/10.1016/j.ymthe.2018.05.014 |
Mesenchymal Stromal Cell Bioreactor for Ex Vivo Reprogramming of Human Immune Cells | https://doi.org/10.1038/s41598-020-67039-w |
Multifunctional Nanocomposites Based on Liposomes and Layered Double Hydroxides Conjugated with Glycylsarcosine for Efficient Topical Drug Delivery to the Posterior Segment of the Eye | https://doi.org/10.1021/acs.molpharmaceut.8b01136 |
Particle size analysis of polydisperse liposome formulations with a novel multispectral advanced nanoparticle tracking technology | https://doi.org/10.1016/j.ijpharm.2019.06.013 |
Review of nanoparticles in ultrapure water: definitions and current metrologies for detection and control | /articles/review-of-nanoparticles-in-ultrapure-water-definitions-and-current-metrologies-for-detection-and-control |
Spark erosion as a high-throughput method for producing bimodal nanostructured 316L stainless steel powder | https://doi.org/10.1016/j.powtec.2018.01.012 |
Synthesis and Characterization of EGFR-Targeted Immunoporphysomes | /1807/89548 |
Synthesis of Ultrasmall Synthetic Melanin Nanoparticles by UV Irradiation in Acidic and Neutral Conditions | /doi/abs/10.1021/acsabm.9b00747 |
Nanoparticle Tracking Analysis for the Quantification and Size Determination of Extracellular Vesicles | Protocol () | https://doi.org/10.3791/62447 |
Isolation and characterization of EV in Saliva of Children with Asthma | https://evcna.com/article/view/3962 |
Spinal cord injury alters microRNA and CD81+ exosome levels in plasma extracellular nanoparticles with neuroinflammatory potential | https://doi.org/10.1016/j.bbi.2020.12.007 |
Skeletal muscle tissue secretes more extracellular vesicles than white adipose tissue and myofibers are a major source ex vivo but not in vivo | https://doi.org/10.1101/2020.09.27.313932 |
Human milk extracellular vesicle miRNA expression and associations with maternal characteristics in a population-based cohort from the Faroe Islands | /articles/s41598-021-84809-2 |
Purification of Cas9 - RNA Complexes by Ultrafiltration | https://doi.org/10.1002/btpr.3104 |
配置:
測(cè)量范圍 | 10 nm - 15 μm |
典型樣品體積 | 350 µL - 1.25 mL |
典型樣品濃度(取決于樣品) | 5 x 106 to 2x108 顆/mL |
樣品溫度范圍(可控) | 10° C - 50° C +/- 0.1° C |
外觀尺寸 | 55 cm W x 66 cm D x 35 cm H |
重量 | 27 kg |
工作環(huán)境 | 15° C - 30° C,濕度 < 85% RH |
應(yīng)用:
疫苗制造和開(kāi)發(fā)中的顆粒分析 ![]() 疫苗輸送系統(tǒng)的規(guī)模很重要。小于 200 nm 的納米顆粒通常比大于 1 微米的微粒表現(xiàn)出更大的免疫原性反應(yīng),即尺寸與病毒尺寸相似的顆粒被人體視為病毒 | 蛋白質(zhì)聚集分析 ![]() 在開(kāi)發(fā)和生產(chǎn)生物藥的過(guò)程中,蛋白質(zhì)聚集始終是一個(gè)重要問(wèn)題,因?yàn)檫@些在顯微鏡下才能看見(jiàn)的聚集顆粒與藥物不良反應(yīng)有關(guān)。蛋白質(zhì)聚集體可能會(huì)通過(guò)不必要的免疫應(yīng)答引發(fā)不良事件。而且無(wú)論反應(yīng)機(jī)制如何,顯微鏡下才能看見(jiàn)的顆粒污染一直是生產(chǎn)企業(yè)和監(jiān)管機(jī)構(gòu)共同關(guān)注的問(wèn)題。 因此,量化因溫度、剪切力、高濃度和時(shí)間等各種條件引發(fā)的蛋白質(zhì)聚集和顆粒組成非常重要。通過(guò)顆粒濃度、粒徑分布的值可以對(duì)樣品和處理過(guò)程進(jìn)行直接比較。需要這些數(shù)據(jù)來(lái)指導(dǎo)配方開(kāi)發(fā)、評(píng)估處理要求和監(jiān)控產(chǎn)品質(zhì)量 | |
納米粒子分析 ![]() 納米技術(shù)極其多樣化,從傳統(tǒng)器件物理的新擴(kuò)展到基于分子自組裝的全新方法,再到開(kāi)發(fā)具有納米級(jí)尺寸的新材料。與宏觀尺度相比,縮小到納米尺度的材料可以表現(xiàn)出不同的特性,從而實(shí)現(xiàn)的應(yīng)用 | 外泌體的粒徑分布和濃度表征 ![]() 外泌體研究發(fā)展一直受到分析技術(shù)的限制。人們一直都在尋找表征外泌體粒徑和濃度的方法。其中納米顆粒追蹤分析技術(shù)(NTA),通過(guò)照相機(jī)實(shí)時(shí)追蹤顆粒的布朗運(yùn)動(dòng)并進(jìn)行計(jì)算,從而得到顆粒的粒徑和濃度。本應(yīng)用文檔展示了ViewSizer 3000作為下一代NTA技術(shù)儀器的強(qiáng)大分析能力,能準(zhǔn)確地表征外泌體的粒徑和濃度 | |
蛋白質(zhì)治療配方中亞可見(jiàn)顆粒的表征![]() 在處理蛋白質(zhì)制劑時(shí),了解給定蛋白質(zhì)在面對(duì)各種壓力條件時(shí)(如溫度或攪拌)的行為變化非常重要,也因?yàn)榈鞍踪|(zhì)制劑中亞可見(jiàn)顆粒群的表征越來(lái)越受到大家的關(guān)注。 本應(yīng)用文檔詳細(xì)闡述了蛋白質(zhì)制劑優(yōu)化的歷史意義,展示了如何使用納米顆粒追蹤分析儀ViewSizer 3000 在不同壓力條件下實(shí)時(shí)有效地可視化和量化亞可見(jiàn)顆粒 |