好爽又高潮了毛片免费下载,国产97在线 | 亚洲,亚洲一区二区三区AV无码,特级AAAAAAAAA毛片免费视频

安科瑞電氣股份有限公司
中級會員 | 第6年

18721095536

電量傳感器
電力監控與保護
多回路電表 APM電表 線路保護器 電力繼電器 電動機保護器 導軌表 無線測溫裝置 APM網絡電力儀表 AMC電表 PZ電壓表 抗晃電裝置 ASJ系列智能剩余電流繼電器 ALP300保護器 智能低壓線路保護器 ARD3M系列智能電動機保護器 ARD2M系列智能電動機保護器 ARD3T系列智能電動機保護器 ARD3系列智能電動機保護器 ARD2F系列智能電動機保護器 ARD2系列智能電動機保護器 溫濕度控制器 在線測溫裝置 ACTB系列電流互感器過電壓保護器 ASD裝置 電能質量在線監測裝置 弧光保護裝置 微機保護裝置 可編程智能化電測儀表 監控裝置 數據中心智能小母線監控 三遙單元 智能電動機保護器 智能電力繼電器 電氣接點在線測溫裝置 智能型溫濕度控制器 開關柜綜合測控裝置 電流互感器過電壓保護器 中壓保護裝置
電能管理
電能質量與治理
系統解決方案
電氣安全
消防應急照明疏散指示系統
新能源
智能網關
數據中心

淺析泛在電力物聯網發展形態與挑戰

時間:2023/10/9閱讀:655
分享:

摘 要:泛在電力物聯網是當前智能電網發展的一個方向。首先,總結了泛在電力物聯網的主要作用和價值體現;其次,從智能電網各個環節概述了物聯網技術在電力領域的已有研究和應用基礎;進而,構思并提出了泛在電力物聯網的發展形態,包含現階段智能電網、透明電網和零邊際成本電網3個階段的技術發展趨勢,為泛在電力物聯網建設的深化提供一些思路;然后,提出泛在電力物聯網的若干技術挑戰,為泛在電力物聯網的未來研究提供參考。

關鍵詞:智能電網;泛在電力物聯網;透明電網

1引言

互聯網技術與新能源技術將推動新一輪能源革命,智能電網與“互聯網+”技術相結合成為當前電氣工程領域研究的熱點,興起了能源互聯網和泛在電力物聯網的概念,為智能電網建設拓展了更開闊的發展空間。其中,物聯網技術作為當前科技領域的熱點技術,在電力領域中的應用展示了充滿想象力的前景。

根據電信聯盟(ITU)的定義,物聯網是通過二維碼識讀設備、射頻識別(RFID)裝置、紅外感應器、全球定位系統和激光掃描器等信息傳感設備,按約定的協議,把任何物品與互聯網相連接,進行信息交換和通信,以實現智能化識別、定位、跟蹤、監控和管理的一種網絡。電網有限公司提出理念,圍繞電力系統各環節,充分應用移動互聯、人工智能等現代信息技術、先進通信技術,實現電力系統各環節萬物互聯、人機交互,形成具有狀態感知、信息快速處理、應用便捷靈活特征的智慧服務系統。隨著物聯網技術的發展,特別是智能傳感器低功率廣域通信,5G以及云/邊緣計算等技術的成熟,如何建設UPIoT引起了廣泛的關注。作為構建透明電網的關鍵支撐技術,小微智能傳感器是傳統傳感器與微處理機相結合的產物,具有采集、處理、交換信息的能力,因其特低功率、便于安裝、抗干擾、價格低等特點使智能電網透明化運行成為可能。以寬帶載波、5G、LPWAN為代表的通信技術,將UPIoT的數據傳輸向高傳輸速率、低功耗、遠距離、高可靠性等方向發展。云/邊緣計算技術有望解決快速處理海量數據的難題,適應電網數字化、信息化、智能化的數據處理需求。

基于此,本文探討了UPIoT的主要作用和價值體現,分析了物聯網技術在發電、輸電、變電、配電和

用電5個環節中的已有基礎,闡述了未來透明電網和零邊際成本電網的概念、內涵和發展趨勢。然后,

本文提出了UPIoT的若干技術挑戰。

2泛在電力物聯網的主要作用和價值體現

電網聯系到千家萬戶的每一臺設備和電器,非常具備物聯網萬物互聯的物質基礎。現有電網上增加傳感測量技術、集成通信技術和計算控制方法,實現物聯網和智能電網的高度融合。

UPIoT以信息獲取為基礎,注重用戶之間以及用戶與電網之間進行實時連接和互動,并對海量數據信息進行收集分析和實時高速傳輸,從而加強電網智能處理和決策支持功能。

UPIoT的主要特征表現在:①無時不在、無處不在:除了電力設備外,成千上萬的電器,甚至是用戶的穿戴設備,都將通過傳感器連接到物聯網中,支持終端即插即用,用戶本身也是物聯網連接的對象之一;②多種業務數據貫通:電網多種業務打破數據壁壘,各環節數據統一在大數據平臺進行管理,為應用提供強大的數據平臺支撐;③應用功能完善:隨著人工智能算法、大數據分析方法的成熟,應用層將會逐漸完善功能,及時處理多種數據形成分析結果和優化方案反饋回電網,保證電網安全穩定可靠經濟運行;④數據呈現巨大效益:電網數據價值得到充分挖掘,既能實現電網企業業務轉型升級和盈利模式創新,又能為各種創新型機構提供共享數據,促進社會經濟發展。

UPIoT的作用和價值主要體現在以下4個方面。

2.1支撐電網運行性能提升

隨著智能電網不斷發展,系統每天都在產生海量數據,對電網的監控、調度和管理帶來了巨大的作用和挑戰。如何對電力系統中多種類型的數據進行有效分析和管理成了急需解決的問題。包含每一個用戶,每一個用電設備的細顆粒度數據將使得智能電網透明化,通過大數據計算分析和可視化展示,非常便于電網相關人員及時洞察異常和潛在的風險,實時準確掌握電網的運行狀態,快速精細預測電網的變化趨勢;多環節業務數據貫通,可打通不同專業部門的數據壁壘,提高對電網認知的性,促進多環節業務協同進行。總之,UPIoT可提高電網運行的安全性、可靠性、性和經濟性。

值得一提的是,傳統的集中式控制模式難以滿足海量數據的傳輸處理的要求,而利用邊緣計算可降低對主站系統的壓力,提高數據傳輸的實時性、準確性和安全性,在中低壓配電網、微電網等分布式控制中具有巨大的競爭力,為電網企業面向內部的管理決策提供了全新的技術手段。

2.2促進與用戶互動化的智能用電

隨著中國人民生活質量的提高,人民對供電質量要求也越來越高,用戶側的光伏、儲能、充電樁等元素越來越多,對智能家居和智能用電的體驗感受越來越重視。在此背景下,傳統的配網運行管理因缺乏必要和充分的用戶數據獲取及交互手段,難以對用戶準確建模并將用戶資源納入電網的協同柔性控制,也無法為用戶提供更和個性化服務。

通過物聯網可以對用戶及配電網運行狀態進行準確的測量和態勢感知,打通電網與用戶雙向通信的通道,引導用戶有序用電,提高用戶參與電網運行的體驗和收益,實現電網與用戶的共贏。如何基于物聯網實現與用戶數據交互、資源共享,促進智能用電服務是目前用電側需要解決的問題。

2.3提升分布式可再生能源消納能力

隨著分布式可再生能源在電網中滲透率的不斷提高,其出力的隨機性、間歇性和波動性經過和傳統

負荷特性的疊加,容易造成配電網功率和電壓的顯著波動,形成階段性過載或者過電壓風險,對配網運

行控制和保護帶來了挑戰。基于物聯網技術,利用智能化的小微傳感器對分布式電源進行實時監測和態勢預測,基于配調系統或者臺區邊緣端對區域配電網或臺區以及DG及時進行調整,實現源網荷儲協作運行,從而降低系統運行風險,提高可再生能源分布式消納水平,促進能源轉型升級。

2.4挖掘用電大數據的增量價值

隨著近兩年對一般工商業電價的調控到位,電網公司從傳統的售電商業模式中獲得利潤的空間和增量已經相當有限,挖掘用電大數據的價值成為電網公司業務和利潤的增長點。另一方面,用電大數據的商業價值一直為社會各界所關注,有望為智慧城市、智能交通、智能家居、傳統商業和第三產業、新能源與節能行業、互聯網行業、咨詢行業、制造業等各行各業帶來重要的信息來源和決策依據。

從商業模式來看,電網有限公司提出的UPIoT的建設將搭建一個以電力供需為核心的泛在電力生態平臺。電網企業將在服務過程中構建起多條服務價值鏈,實現電網企業與相關方的共創共享共贏。而用電大數據的基礎必然是配用電物聯網。

3物聯網技術在電網中的已有基礎

UPIoT的概念,是基于目前電力系統信息化、智能化的技術現狀和發展趨勢提出來的。本節從發電、輸電、變電、配電、用電5個方面,闡述電網中物聯網技術的研究和應用基礎。

3.1發電領域

“互聯網+”智慧能源的任務之一就是推動能源生產智慧化,提升大規模新能源的消納能力。作為實現這一目標的技術基礎,物聯網技術在發電領域的應用主要體現在傳感器應用及對發電機實時狀態監測。文獻基于物聯網架構,構建了發電機組遠程狀態監測系統,實現了機組狀態遠程在線專家診斷、故障預報、科學維護,保障機組安全運行;文獻設計了基于視頻監控、RFID、GPRS等技術的物聯網監控平臺,實現發電系統各類動態數據的可視化。文獻利用ZigBee和嵌入式系統搭建微網分布式電源的控制系統,其中,ZigBee用于短距離通信,嵌入式系統用于數據格式處理和通信協議轉化,控制命令由遠程服務器生成并下達。

3.2輸電領域

物聯網技術在輸電領域的應用主要體現在對輸電線路狀態的監測及線路安全檢修管控。目前,基于物聯網技術的輸電線路監測系統,根據應用場合的不同,數據采集的方式或傳輸層的通信方式也可能不一樣。現有監測系統往往存在運行維護費用高、數據傳輸率低等問題。文獻組建了基于級聯拓撲無線Mesh與光纖復合架空地線光傳輸耦合網絡,滿足輸電線路設備物聯網通信網絡帶寬、時延、可靠性和安全性要求。文獻則采用接入網和匯聚網兩級通信網絡結構進行變電站和輸電線路的通信網絡設計,從而實現遠距離傳輸。文獻提出扁平式通信網絡結構和有線/無線雙通道異構組網技術,比傳統方法更有效地保障了重負載網絡性能和網絡容錯能力。文獻借鑒產品電子代碼設計了輸變電設備標識碼,提高了設備之間的信息聯系交互能力和共享能力;文獻結合ZigBee和GPRS組成混合網絡,用來傳輸桿塔傾角、人員攀爬、導線拉力、桿塔振動等監測數據,減少人工巡檢的工作量。

3.3變電領域

物聯網在變電領域的應用包括了變電站電氣信息,設備溫度等狀態信息和運行操作信息的監控預警與故障診斷等方面,著力于解決變電設備狀態實時監測、監測裝置孤島運行、故障診斷功能不足等問題。工業物聯網是實現變電站監控數據實時采集、通信和處理的有效手段。文獻設計了變電設備智能監測傳感網絡,并基于一體化智能監測裝置實現收發數據、分布式計算以及設備故障診斷和預警功能。文獻基于視覺傳感器、信息傳輸和智能視覺分析組成智能視覺物聯網,將紅外圖像與可見光圖像智能識別相結合,準確、實時地檢測和定位變電站設備溫度異常區域。文獻采用物聯網技術研發了一套可移動、免安裝、無線化的變電設備局部放電檢測系統,使現場設備可以在不停電下進行帶電檢測與在線監測。此外,針對變電站避雷器故障診斷和安全操作的監控也取得不少成果。

3.4配電領域

物聯網技術在配電領域的應用包括對配電設備及其運行狀態的監測、故障定位、資產管理。文獻采用無線傳感器反應網絡(WSANs)構建了智能電網的信息系統,實現智能電網的可視可控。文獻采用無線傳感網絡建立了配網故障定位系統,相比于傳統故障定位系統,故障定位更準確,性價比更高。文獻將RFID應用到資產管理工作中,提高資產管理水平和效率。主動地對并網分布式發電(DG)、儲能、充電樁、有載調壓變壓器、無功補償等配電網設備的運行進行優化與控制是主動配電網的主要功能,而這些功能的實現往往依賴于物聯網技術。兩者的深度融合將形成配電物聯網,成為能源轉型“再電氣化”發展的新思路、新模式、新焦點。文獻論述了配電物聯網的內涵構想和應用特征,提出由“云、管、邊、端”構成的配電物聯網體系架構;文獻針對配電臺區管理存在設備多、通信基礎薄弱等困難,提出一種新型配電臺區應用實踐方式、設計理念、關鍵技術節點和協同機制;文獻總結了配電物聯網建設背景下的智能終端的內涵及基本特征,給出了智能終端硬件的基本結構和軟件的重要組成,分析了智能終端在計算、存儲、通信等方面為配電網向能源互聯網轉型發展所帶來的變化。

3.5用電領域

物聯網在用電領域的應用主要涉及低壓抄表、用電安全、工廠智能用電、智能家居、智能充電、智能樓宇等。智能用電服務系統是智能電網建設在用戶側的重要組成部分,文獻分別從組成架構和信息架構兩方面介紹了用電設備智聯網的體系架構,并分析了用電設備智聯網這個“電力物聯網”的功能,異構了電力光纖、雙絞線、現場總線和無線網絡等大容量傳輸技術,可以支撐DG、電動汽車和智能家居的應用。中國已經推廣應用了智能電表,結合UPIoT的建設推進,智能電表的超計量功能價值凸顯,智能用電的各種場景都將變得清晰。總體上看,UPIoT是電力網-信息網-社會網的融合。在此階段,需要加強4個方面的研究:大范圍多設備感知能力強化;多業務異構數據統一管理平臺建設,包括數據標準與模型統一、系統技術架構統一、平臺入口統一等;電力大數據快速分析與應用;用電大數據安全與隱私保護及分級授權方法。

4泛在電力物聯網的發展形態

隨著傳感器技術、通信技術與云/邊緣計算技術等物聯網關鍵技術在智能電網中的應用深化,UPIoT的形態也會逐漸演化。階段,UPIoT基本實現電網的信息化和自動化,建成一系列通信信息平臺和自動化系統,對應當前智能電網的發展水平;第2階段:UPIoT連接對象更加豐富,數據的應用水平明顯提高,數據采集、通信與計算處理分析的效率與質量提升,提高電力系統各個環節的可觀可測性,通過貫通不同業務數據,逐漸實現電網透明化運行;第3階段:UPIoT加強用戶與電網交互,萬千主體在開放式平臺上參與電力生產與消費,促進電力供應的邊際成本趨近于零,從而可能形成零邊際成本電網形態。

4.1初級形態:現階段智能電網

自2000年美國提出智能電網概念以來,多個興起了智能電網的研究和建設工作,并取得了突出的成果。中國的智能電網建設涵蓋了電網的各個環節,推廣應用了一系列通信信息平臺和自動化系統,電網的信息化和自動化水平得到了顯著的提升。盡管中國大力推進智能電網建設,但仍存在著數據不貫通、終端覆蓋不足、通信不暢通、資源利用率不高等問題。

電力和信息的雙向流動性是智能電網的本質特征之一,這與UPIoT的理念是一致的。UPIoT的概念是基于現階段智能電網的技術背景和需求提出的。UPIoT的工作任務是銜接智能電網的發展現狀,進一步促進電力網-信息網-社會網的融合貫通。因此,可以將現階段智能電網視為UPIoT的初級階段。

4.2形態:透明電網

李立浧院士在“2018鹽城綠色智慧能源大會”上提出的“透明電網”方向,通過信息技術、計算機技術、數據通信技術、傳感器技術、電子控制技術、自動控制理論、運籌學、人工智能、互聯網等技術的綜合運用,使電網運行透明、可觀可測。區別于運行數據不全和狀態難以準確評估預測的傳統電網,透明電網是基于UPIoT的一種新的電網形態:通過對并網的設備及關鍵節點的運行數據進行實時采集、上傳、識別和監控,并在配電網可視化平臺上集中反映,從而實現全數據采集、全狀態可見、全態勢預測以及全網絡可控的一種透明化電網模式。透明電網與UPIoT的概念不謀而合,其區別在于UPIoT強調的是技術路線(即泛在物聯),而透明電網則是強調終效果(即透明)。透明電網實現了對電網數據及數據蘊含意義、規律、價值的高度掌控,是UPIoT充分發展后的結果。在透明電網中,每個點每條線的數據都可以采集,所有的電網狀態和設備狀態都可以獲取,整個電網的趨勢和任意操作的結果都可以預見。因此,本文將透明電網視為UPIoT的形態。

透明電網的主要特征表現在:①數據透明:電網的運行數據可以通過在電網中密集分布的傳感器廣泛收集,電網的資產信息可以通過實時更新的臺賬準確獲取;②狀態透明:設備的運行狀態和電網的運行狀態可以通過采集到的數據準確評估,電網的拓撲結構可以清晰辨識;③態勢透明:電網未來的發展態勢可以準確預測,這為快速率解決包含源網荷儲充多維不確定性的智能電網運行維護的安全性、可靠性具有至關重要的意義。

透明電網是在UPIoT賦能下的電網運行形態。利用物聯網小微傳感器、先進通信技術、大數據分析技術,電網從業人員可以理解電網量測數據、調控行為、市場信息等多類型數據蘊含的意義、規律、價值,掌握從微網到復雜大電網運行的特征與策略。

小微智能傳感器是組成透明電網的重要元素,其未來將要突破的瓶頸是自行實現能量補給的問題。通過節點內置傳感器進行采集和處理目標信息的無線傳感網絡因其具有自組織性、抗干擾能力強等特點,與小微智能傳感器相結合,將為物聯網帶來傳感、互通和驅動的高性能。

5G通信系統具有高傳輸速率、超大容量帶寬、低延時、低功耗、點對點傳輸等特點,使得視頻等海量數據快速傳輸成為可能,更能支撐透明電網的全景實現。但應該重視的是,因為數據來源急劇增加,需要特別關注信息的加密和安全防控,防范不法分子竊取重要數據、通過網絡攻擊惡意引發電網事故。

在5G通信技術支撐下,電力大數據的智能分析是電網實現透明化運行的必要手段。電力系統發展至今,產生的運行數據數量已經超過傳統數據處理方法的能力范圍,依靠大數據分析方法才能滿足當前和未來電力系統獲取信息的需求。人工智能在電力大數據的價值挖掘中的作用不可替代,特別是大量視頻圖像數據,離開人工智能技術應用將只會成為電網運行的負擔。

此外,若將海量數據遠距離傳輸到云端處理,帶來巨大的網絡負擔、存儲負擔和計算負擔。邊緣計算在業務來源就近處理數據,只將必要的少量數據上傳到云端,是一種更具有效率的計算方式。當然,過度配置邊緣計算資源對整個系統而言也會造成不必要的浪費。在整個數據處理周期內,邊緣計算和云計算如何協同,需要深入研究資源、任務在云端和邊緣節點的平衡。

4. 3 遠景形態:零邊際成本電網

《零邊際成本社會》中描述:“在未來的時代,每個人都會變成產消者,可以更直接地在物聯網上生產并相互分享能源和實物,這種方式的邊際成本接近于零,近乎免費”。

在物聯網技術的長遠作用下,能源生產力將會有巨大的飛躍,未來智能電網可以實現能源的隨時接入與使用,實現分布式能源就近獲取和多種能源網融合,使用戶逐漸成為產消者,互聯網交易和共享促進能源交易和增值服務,終發展成為零邊際成本電網。

零邊際成本電網是在物聯網平臺支撐下對傳統垂直電力價值鏈的改變,它可以使電力供應的邊際成本趨近于零,是具生態效益的UPIoT形態。需要指出的是,零邊際成本電網的實現,不僅需要物聯網技術對生產力的推動,同時也需要經濟主體觀念的轉變——從追求利益到按需生產和消費,這兩者都需要長遠的過程。因此,不妨將零邊際成本電網視為UPIoT的遠景形態。

在未來物聯網技術的支撐下,電能由即插即用的分布式可再生能源發電提供,不需要消耗常規能源,生產邊際成本趨近于零;電網的自動化控制系統按化的路徑傳輸、分配電能,同時高溫超導的應用使輸送損耗顯著降低,輸送邊際成本趨近于零;用戶以低廉的價格獲得電力,而且,用戶同時也是電能的生產者,在一段時間內,電能買賣基本實現平衡,消費邊際成本趨近于零。電能供應全鏈條的邊際成本趨近于零。

零邊際成本電網的主要特征表現在:①電力供應邊際成本趨近于零:電力生產采用綠色能源,大大減少高成本化石能源的使用;電網接入大量DG,電力需求自給自足、就近滿足,無須遠距離輸送電能;小微能源采集器無處不在,未來可以隨時隨地使用能源;種種轉變使電力生產、傳輸、消費等各個環節成本不斷降低。②電力市場迎來協同共享模式:每個用戶同時也是電力的生產者,眾多產消者參與到電力協同共享中,形成橫向規模經濟。

物聯網技術可以釋放潛藏在各處的電力生產力,降低電力供應邊際成本。同時,開放的物聯網平臺提供了大量產消者進行電力共享的條件。毫無疑問,零邊際成本電網的實現需要依靠物聯網的大力支撐推動能源生產和消費革命。

零邊際成本電網的目標對UPIoT提出更高的要求,包括:建立多主體開放平臺,滿足大量分散產消者參與電力分享的平臺需求,主動適應社會、經濟的新發展;實現共享經濟下的信用管理,保障協同共享經濟模式的可持續發展。

5泛在電力物聯網的技術挑戰

為達到透明電網乃至零邊際成本電網形態,UPIoT的建設還需要克服多項技術難題。本節從數據采集、數據通信、數據處理3個方面,提出泛在電力物聯網的技術挑戰。

5.1傳感器的覆蓋不充分,電網仍存在監測盲區

當前,電網仍存在著許多監測盲區:輸電線路跨越的距離長,架設的環境復雜多變,天然具有分布式特性,而現階段對輸電線的監測只是選取了部分重要的節點和分段,遠遠達不到廣域監測的水平;配電網點多面廣,傳統的測量裝置存在體積大、成本高、功耗大、運維困難等不足,無法鋪開安裝;低壓用電信息沒有打通,物人互聯的技術尚未突破,用戶參與程度較低。

為消除監測盲區,傳感器技術的提升是一大挑戰。對于輸電線監測,采用分布式的傳感器(例如光纖測溫),準實時獲取沿線的微氣象、微地形、微圖像,輔以大數據分析和人工智能識別技術,提高線路監測效果,實現輸電線的廣域監測;對于配電網監測,加強小微傳感器的開發與實用化,以體積小、成本低、功耗小、運維方便等優異特性適應配電網點多面廣的監測需求;對于用電監測,通過傳感器連接各種用電終端,或者采用非侵入式負荷監測的方式,與用電終端、用戶產生連接。

5.2數據模型和通信標準沒有統一,信息孤島難以消除

電網已推廣應用多個自動化系統和通信信息平臺,不同系統平臺的建設規范不同,數據無法有效共享和管理,形成信息孤島;另外,配電網的設備制造廠商眾多,不同廠商沒有遵循統一的數據模型和通信標準,導致配電網的數據管理比較混亂,信息網絡十分復雜。

因此,需制定統一的數據模型和通信協議,要求新投運的系統平臺和設備遵循標準;同時,對于已投運的系統平臺設備,提出數據模型和通信協議的便捷轉換技術。從增量和存量2個方面改進,消除信息孤島,實現對數據的統一管理。配電物聯網在標準化、數據化、業務軟件定義等方面將對新的產業生態帶來重要的促進作用。另外,針對配電網通信條件較差的現狀,利用配電網電線桿塔等基礎設施構建5G基站,將更加有利于配電物聯網的發展。

5.3數據分析智能化程度低,用電數據價值尚未被有效挖掘

電網有上億的用戶,其數據是非常有價值的。一方面,海量的用戶數據使得電網公司可以充分認識用戶的特性,可以為電網公司削峰填谷、提高電網利用率、節能降耗、防范竊電、低壓運維、系統規劃帶來新的技術支撐手段;另一方面,基于物聯網的智能用電可以為用戶提供更好的用電服務和增量服務,例如用戶節能、用電安全、電氣防火、電器控制、共享充電與停車、快速復電、DG運維管理、需求響應等。

但是,目前這些數據的價值還未得到充分的挖掘,其中一個重要的原因是數據分析智能化程度低。只有對用戶的數據進行多方面的深入挖掘,才能釋放其價值,實現低壓拓撲自動識別、低壓故障精確診斷、電能質量有效控制、線損精益化管理、竊電管理、細顆粒度負荷預測、光儲一體調度、車輛到電網(vehicle-to-grid,V2G)、柔性負荷控制與需求側響應,以及用戶增值服務(如金融)等目標,為各行業發展規劃與決策提供重要支撐。因此,需要加強用電大數據應用建模與智能算法研究,據此掌握用戶行為規律,挖掘用電信息價值。

6 Acrel-EIOT能源物聯網云平臺

(1)概述

Acrel-EIoT能源物聯網開放平臺是一套基于物聯網數據中臺,建立統一的上下行數據標準,為互聯網用戶提供能源物聯網數據服務的平臺。用戶僅需購買安科瑞物聯網傳感器,選配網關,自行安裝后掃碼即可使用手機和電腦得到所需的行業數據服務。

該平臺提供數據駕駛艙、電氣安全監測、電能質量分析、用電管理、預付費管理、充電樁管理、智能照明管理、異常事件和記錄、運維管理等功能,并支持多平臺、多語言、多終端數據訪問。

(2)應用場所

本平臺適用于公寓出租戶、連鎖小超市、小型工廠、樓管系統集成商、小型物業、智慧城市、變配電站、建筑樓宇、通信基站、工業能耗、智能燈塔、電力運維等領域。

(3)平臺結構

(4)平臺功能

電力集抄

電力集抄模塊可以實現對各種監測數據的查詢、分析、預警及綜合展示,以保證配電室的環境友好。在智能化方面實現供配電監控系統的遙測'、遙信、遙控控制,對系統進行綜合檢測和統一管理;在數據資源管理方面,可以顯示或查詢供配電室內各設備運行(包括歷史和實時參數,并根據實際情況進行日報、月報和年報查詢或打印,提高工作效率,節約人力資源。

變壓器監控

配電圖

能耗分析

能耗分析模塊采用自動化、信息化技術,實現從能源數據采集、過程監控、能源介質消耗分析、能耗管理等全過程的自動化、科學化管理,使能源管理、能源生產以及使用的全過程有機結合起來,運用先進的數據處理與分析技術,進行離線生產分析與管理,實現全廠能源系統的統一調度,優化能源介質平衡、有效利用能源,提高能源質量、降低能源消耗,達到節能降耗和提升整體能源管理水平的目的。

能耗概況

預付費管理

1)登陸管理:管理操作員賬戶及權限分配,查看系統日志等功能;

2)系統配置:對建筑、通訊管理機、儀表及默認參數進行配置;

3)用戶管理:對商鋪用戶執行開戶、銷戶、遠程分合閘、批量操作及記錄查詢等操作;

4)售電管理:對已開戶的表進行遠程售電、退電、沖正及記錄查詢等操作;

5)售水管理:對已開戶的表進行遠程售水、退水、記錄查詢等操作;

6)報表:提供售電、售水財務報表、用能報表、報表等查詢,本系統所有的報表及記錄查詢,都支持excel格式導出。

預付費看板

充電樁管理

通過物聯網技術,對接入系統的充電樁站點和各個充電樁進行不間斷地數據采集和監控,同時對各類故障如充電機過溫保護、充電機輸入輸出過壓、欠壓、絕緣檢測故障等一系列故障進行預警。云平臺包含了充電收費和充電樁運營的所有功能,包括城市級大屏、交易管理、財務管理、變壓器監控、運營分析、基礎數據管理等功能。

充電樁看板

智能照明

智能照明通過物聯網技術對安裝在城市各區域的室內照明、城市路燈等照明回路的用電狀態進行不間斷地數據監測,也可以實現定時開關策略配置及后臺遠程管理和移動管理等,降低路燈設施的維護難度和成本,提升管理水平,并達到一定節能減掛的效果。

監控頁面

安全用電

安全用電采用自主研發的剩余電流互感器、溫度傳感器、電氣火災探測器,對引發電氣火災的主要因素(導線溫度、電流和剩余電流)進行不間斷的數據跟蹤與統計分析,并將發現的各種隱患信息及時推送給企業管理人員,指導企業實現時間的排查和治理,達到消除潛在電氣火災安全隱患,實現“防患于未然”的目的。

智慧消防

通過云平臺進行數據分析、挖掘和趨勢分析,幫助實現科學預警火災、網格化管理、落實多元責任監管等目標。原先針對“九小場所”和危化品生產企業無法有效監控的空白,適應于所有公建和民建,實現了無人化值守智慧消防,實現智慧消防“自動化”、“智能化”、“系統化”、用電管理“精細化”的實際需求。

(5)系統硬件配置

類型

型號

外觀

產品功能

能源物聯網云平臺

Acrel-EIOT

image.png

提供數據駕駛艙、電氣安全監測、電能質量分析、用電管理、預付費管理、充電樁管理、智能照明管理、異常事件和記錄、運維管理等功能,并支持多平臺、多語言、多終端數據訪問

智能網關

AWT100-4G

image.png

1路下行485,上行可選配4G、WIFI、網口

ANet-1E2S1-4G

image.png

上行:以太網、4G

下行:RS485

物聯網電表

ARTU系列

image.png

可擴展DIDO以及多路模擬量輸入輸出單元。

通訊方式:RS485接口,Modbus協議。可擴展2G、Lora、LoRAWAN、NB-IoT、4G、以太網

無線測溫

ARTM-Pn

image.png

可監測電壓、電流、頻率、有功功率、無功功率、電能,可接收60個無線溫度傳感器溫度

ATC600

image.png

ATC600有2種工作模式:終端(-C)、中繼(-Z),可根據項目布局選擇配置。可接收240個無線溫度傳感器溫度

光伏監控

AGF

image.png

光伏電池串開路,可以配合組串電壓進行綜合判斷;帶3路開關量狀態監測,用于采集直流斷路器、防雷器等輸出空接點狀態;一次電流采用穿孔方式接入,安裝方便,安全性高;測量元件采用霍爾傳感器,隔離測量電流20A;電壓測量功能可測量母線電壓高DC 1500V

電力監控

AEM96

image.png

三相電力參數測量、電壓和電流的相角、四象限電能計量、復費率、需量、歷史電能統計、開關量事件記錄、歷史值記錄、31次分次諧波及總諧波含量分析、分相諧波及基波電參量(電壓、電流、功率)、開關量、輸出

通訊方式:RS485接口,支持Modbus-RTU 協議

AEM72

image.png

三相電力參數測量、電壓和電流的相角、四象限電能計量、復費率、需量、歷史電能統計、開關量事件記錄、歷史值記錄、31次分次諧波及總諧波含量分析、分相諧波及基波電參量(電壓、電流、功率)、開關量、輸出

通訊方式:RS485接口,支持Modbus-RTU 協議

ACR系列

image.png

三相所有電力參數、需量記錄(ACR320EFL)、分時電能統計及12月電能統計、日期時間顯示、LCD顯示、RS485通訊,事件記錄。

通訊方式:RS485,Prifibus-DP、以太網

APM系列

image.png

全電量測量,四象限電能,復費率電能,儀表內部溫度測量,總有功、總無功、總視在電能脈沖輸出、秒脈沖等可選。三相電流、有功功率、無功功率、視在功率實時需量及需量(包含時間戳)。電流、線電壓、相電壓、有功功率、無功功率、視在功率、功率因數、頻率、電流總諧波、電壓總諧波的本月值和上月值(包含時間戳)。中文顯示,有功電能0.2s級。通訊方式:RS485,Prifibus-DP、以太網

物聯網電表

DDS

image.png

有功、無功電能計量,電參量測量:U、I 、P、Q、S、PF、F, LCD 顯示, RS485通訊,MODBUS-RTU 和 DL/T645 協議

物聯網電表

DDSD

image.png

電能計量:總電能計量(反向計入正向),3 個月歷史電能數 據凍結存儲電參量測量:U、I 、P、Q、S、PF、F 測量 LCD 顯示:8位段式 LCD 顯示按鍵編程:3按鍵可編程設置密碼、通訊地址、波特率、復 費率和通訊協議。

脈沖輸出:L有功電能脈沖輸出復費率:4個時區、2 個時段表、14 個日時段、4 個費率通訊: RS485接口, MODBUS-RTU 、 DL/T645-97 、 DL/T645-07 協議、紅外通訊

物聯網電表

DTSD

image.png

電能計量:有功電能計量(正、反向)、無功電能計量(正、反向)、 A、B、C 分相正向有功電能電參量測量: U、I 、 P、Q、S、PF、F諧波測量: 2~31 次諧波電壓電流LCD 顯示: 8 位段式 LCD 顯示、背光顯示按鍵編程:4 按鍵可編程通信、變比等參數脈沖輸出: 有功脈沖輸出、 無功脈沖輸出 、時鐘脈沖輸出LED : 失壓、過壓 復費率及附帶功能:有源開關量輸入 、 3 開關量輸出 、 支持 4 個時區、2 個時段表、 14 個日時段、4 個費率、需量及發生時間 、上 48 月、上 90 日歷史凍結數據 、 日期、時間

通訊:紅外通訊、RS485 接口、 同時支持 Modbus、DL/T645測溫:支持 3 外置 NTC 測溫

物聯網電表

ADL200

image.png

單相電參量U、I、P、Q、S、PF、F測量。總電能計量(反向計入正向),3個月歷史電能數據凍結存儲;8位段式LCD顯示;有功電能脈沖輸出;有功電能精度1級,無功電能2級。

ACR10R

image.png

三相電流/電壓/頻率/功率因數,有功/無功/視在功率,四象限電能計量,需量,復費率電能計量,總諧波含量、分次諧波(2-63次),事件記錄和功能。電能精度0.5級。

通訊方式:RS485接口,支持Modbus-RTU協議

ADL10-E

image.png

有功、無功電能計量,電參量測量:U、I 、P、Q、S、PF、F, LCD 顯示, RS485通訊,MODBUS-RTU 和 DL/T645 協議

ADL400

image.png

三相電參量U、I、P、Q、S、PF、F測量。(正、反向)有功、無功電能計量;A、B、C 分相正向有功電能計量;2-31次諧波電壓電流;12位段式LCD顯示、背光顯示,電能精度0.5s級。

ADW200

image.png

4路三相電壓、電流、功率、功率因數、頻率測量;電壓電流相角、電壓電流不平衡度測量;電壓電流2-31次分次諧波及總畸變測量;當月及上三月的電壓、電流、功率值記錄;需量及上十二月歷史需量記錄;事件記錄、復費率、四象限電能及歷史電能記錄;支持12路開關量輸入4路開關量輸出;支持12路測溫4路剩余電流測量;有功電能精度1級。

通訊方式:RS485接口,支持Modbus-RTU協議

ADW210

image.png

4路三相電壓、電流、功率、功率因數、頻率測量;電壓電流相角、電壓電流不平衡度測量;電壓電流2-31次分次諧波及總畸變測量;當月及上三月的電壓、電流、功率值記錄;需量及上十二月歷史需量記錄;事件記錄、復費率、四象限電能及歷史電能記錄;支持12路開關量輸入4路開關量輸出;支持12路測溫4路剩余電流測量;有功電能精度1級。

ADW300-4G

image.png

三相電壓、電流、功率、功率因數、頻率測量;電壓電流相角、電壓電流不平衡度測量;電壓電流2-31次分次諧波及總畸變測量;當月及上三月的電壓、電流、功率值記錄;需量及上十二月歷史需量記錄;事件記錄、復費率、四象限電能及歷史電能記錄;支持4路開關量輸入、2路開關量輸出;支持4路測溫;支持1路剩余電流測量;支持本地顯示及按鍵設置;有功電能精度1級。

通訊方式:支持RS485通訊、Lora無線通訊、4G通訊;WIFI通訊

預付費電表

DDSY-4G

image.png

單相電參量U、I、P、Q、S、PF、F測量。有功電能計量(正、反向),A、B、C分相正向有功電能,支持4個時區、2個時段表、14個日時段、4個費率需量及發生時間,實時需量,歷史凍結數據購電記錄;8位段式LCD顯示、背光顯示;有功電能脈沖輸出;有功電能精度1級,無功電能0.5s級。

DTSY-4G

image.png

三相電參量U、I、P、Q、S、PF、F測量。有功電能計量(正、反向),A、B、C分相正向有功電能,支持4個時區、2個時段表、14個日時段、4個費率需量及發生時間,實時需量,歷史凍結數據購電記錄;8位段式LCD顯示、背光顯示;有功電能脈沖輸出;有功電能精度1級,無功電能0.5s級。

直流電能表

DJSF1352

image.png

1.精度:1級或0.5級,帶±12V電壓輸出用于霍爾傳感器供電

2.測量:電壓、電流、功率、正反向電能,支持雙路計量。

電氣安全

ARCM300-Z

image.png

三相(I、U、Kw、Kvar、Kwh、Kvarh、 Hz、cosΦ),視在電能、四象限 電能計量,單回路剩余電流監測, 4 路溫度監測,2 路繼電器輸出,2

路開關量輸入,支持斷電上傳

AAFD-DU

image.png

監測故障電弧、漏電、溫度

兩路無源干接點(開關量)輸入

兩路無源常開觸點(開關量)輸出

充電樁

ACX系列

image.png

充滿自停、斷電記憶、短路保護、過載保護、空載保護、故障回路識別、遠程升級、功率識別、獨立計量、告警上報。

支持投幣、刷卡,掃碼、免費充電,

AEV_AC007

image.png

額定功率7kW,單相三線制,防護等級IP65,具備防雷保護、過載保護、短路保護、漏電保護、智能監測、智能計量、遠程升級,支持刷卡、掃碼、即插即用。

通訊方式:4G、藍牙、Wifi

智慧照明

ASL200

image.png

遙控輸出

兩路無源干接點(開關量)輸入

兩路無源常開觸點(開關量)輸出

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7結論

UPIoT 的提出和發展給智能電網發展帶來了新的契機。傳感器技術、通信技術與云/邊緣計算技術等物聯網關鍵技術的不斷迭代更新,將會對智能電網的數據采集、通信與計算處理環節的效率與質量帶來顯著提升,從而提高電力系統發-輸-變-配-用各個環節的可觀可測性,顯著提升電網運行水平,充分挖掘電力數據價值;物聯網平臺的開放特性,可以有力地支撐電力供應模式的創新變革,釋放電力生產力。泛在物聯網技術在電網中的廣泛應用將會推動智能電網向透明電網、零邊際成本電網演化,終實現大眾參與、協同共享的可持續發展的電力產業升級與變革。

參考文獻

[1]李欽豪,張勇軍,陳佳琦,羿應棋,何奉祿.泛在電力物聯網發展形態與挑戰

{2]李立浧,張勇軍,陳澤興,等 . 智能電網與能源網融合的模式及其發展前景[J].電力系統自動化,2016

[3]李興源,魏巍,王渝紅,等 . 堅強智能電網發展技術的研究[J]電力系統保護與控制,2009,37(17):1-7.

[4]楊挺,趙黎媛,王成山 .人工智能在電力系統及綜合能源系統中的應用綜述[J].電力系統自動化

[5]企業微電網設計與應用手冊2022.05版.

 

會員登錄

×

請輸入賬號

請輸入密碼

=

請輸驗證碼

收藏該商鋪

X
該信息已收藏!
標簽:
保存成功

(空格分隔,最多3個,單個標簽最多10個字符)

常用:

提示

X
您的留言已提交成功!我們將在第一時間回復您~
撥打電話
在線留言