西門(mén)子s7300模塊365-0BA01-0AA0批發(fā)代理 西門(mén)子s7300模塊365-0BA01-0AA0批發(fā)代理
:李 工()竭誠(chéng)為您服務(wù)

電壓高達(dá)50~l59kV,電流達(dá)到0.5A以上,功率可達(dá)100kW。自從70年始,日本的一些公司開(kāi)始采用逆變技術(shù),將市電整流后逆
變?yōu)?kHz左右的中頻,然后升壓。進(jìn)入80年代,高頻開(kāi)關(guān)電源技術(shù)迅速發(fā)展。
德國(guó)西門(mén)子公司采用功率晶體管做主開(kāi)關(guān)元件,將電源的開(kāi)關(guān)頻率提高到20kHz以上。并將干式變壓器技術(shù)成功的應(yīng)用于
高頻高壓電源,取消了高壓變壓器油箱,使變壓器系統(tǒng)的體積進(jìn)一步減小。國(guó)內(nèi)對(duì)靜電除塵高壓直流電源進(jìn)行了研制,市電經(jīng)整
流變?yōu)橹绷?采用全橋零電流開(kāi)關(guān)串聯(lián)諧振逆變電路將直流電壓逆變?yōu)楦哳l電壓,然后由高頻變壓器升壓,后整流為直流高壓
。
濾波器傳統(tǒng)的交流-直流(AC-DC)變換器在投運(yùn)時(shí),將向電網(wǎng)注入大量的諧波電流,引起諧波損耗和干擾,同時(shí)還出現(xiàn)裝置網(wǎng)
側(cè)功率因數(shù)惡化的現(xiàn)象,即所謂“電力公害”,例如,不可控整流加電容濾波時(shí),網(wǎng)側(cè)三次諧波含量可達(dá)(70~80)%,網(wǎng)側(cè)功率因數(shù)
僅有0.5~0.6。
在電阻負(fù)載條件下,輸出直流電壓達(dá)到55kV,電流達(dá)到15mA,工作頻率為25.6kHz。電力有源濾波器是一種能夠動(dòng)態(tài)抑制諧
波的新型電力電子裝置,能克服傳統(tǒng)LC濾波器的不足,是一種很有發(fā)展前途的諧波抑制手段。
供電系統(tǒng)分布式電源供電系統(tǒng)采用小功率模塊和大規(guī)模控制集成電路作基本部件,利用上海騰樺電氣設(shè)備有限公司理論和
技術(shù)成果,組成積木式、智能化的大功率供電電源,從而使強(qiáng)電與弱電緊密結(jié)合,降低大功率元器件、大功率裝置(集中式)的研
制壓力,提高生產(chǎn)效率。
濾波器由橋式開(kāi)關(guān)功率變換器和具體控制電路構(gòu)成。與傳統(tǒng)開(kāi)關(guān)電源的區(qū)別是:(l)不僅反饋輸出電壓,還反饋輸入平均電
流;(2)電流環(huán)基準(zhǔn)信號(hào)為電壓環(huán)誤差信號(hào)與全波整流電壓取樣信號(hào)之乘積。八十年代初期,對(duì)分布式高頻開(kāi)關(guān)電源系統(tǒng)的研究
基本集中在變換器并聯(lián)技術(shù)的研究上。
八十年代中后期,隨著高頻功率變換技術(shù)的迅述發(fā)展,各種變換器拓?fù)浣Y(jié)構(gòu)相繼出現(xiàn),結(jié)合大規(guī)模集成電路和功率元器件
技術(shù),使中小功率裝置的集成成為可能,從而迅速地推動(dòng)了分布式高頻開(kāi)關(guān)電源系統(tǒng)研究的展開(kāi)。自八十年代后期開(kāi)始,這一方
向已成為電力電子學(xué)界的研究熱點(diǎn),論文數(shù)量逐年增加,應(yīng)用領(lǐng)域不斷擴(kuò)大。
分布供電方式具有節(jié)能、可靠、高效、經(jīng)濟(jì)和維護(hù)方便等優(yōu)點(diǎn)。已被大型計(jì)算機(jī)、通信設(shè)備、航空、工業(yè)控制等系統(tǒng)逐
漸采納,也是超高速型集成電路的低電壓電源(3.3V)的為理想的供電方式。在大功率場(chǎng)合,如電鍍、電解電源、電力機(jī)車牽
引電源、中頻感應(yīng)加熱電源、電動(dòng)機(jī)驅(qū)動(dòng)電源等領(lǐng)域也有廣闊的應(yīng)用前景。
設(shè)計(jì)方法編輯電源的電磁干擾水平是設(shè)計(jì)中難的部分,設(shè)計(jì)人員能做的多就是在設(shè)計(jì)中進(jìn)行充分考慮,尤其在布局
時(shí)。由于直流到直流的轉(zhuǎn)換器很常用,所以硬件工程師或多或少都會(huì)接觸到相關(guān)的工作,本文中我們將考慮與低電磁干擾設(shè)
計(jì)相關(guān)的兩種常見(jiàn)的折中方案[1]。
電源設(shè)計(jì)中即使是普通的直流到直流開(kāi)關(guān)轉(zhuǎn)換器的設(shè)計(jì)都會(huì)出現(xiàn)一系列問(wèn)題,尤其在高功率電源設(shè)計(jì)中更是如此。除功
能性考慮以外,工程師必須保證設(shè)計(jì)的魯棒性,以符合成本目標(biāo)要求以及熱性能和空間限制,當(dāng)然同時(shí)還要保證設(shè)計(jì)的進(jìn)度
。
另外,出于產(chǎn)品規(guī)范和系統(tǒng)性能的考慮,電源產(chǎn)生的電磁干擾(EMI)必須足夠低。不過(guò),電源的電磁干擾水平卻是設(shè)計(jì)中
難精確預(yù)計(jì)的項(xiàng)目。有些人甚至認(rèn)為這簡(jiǎn)直是不可能的,設(shè)計(jì)人員能做的多就是在設(shè)計(jì)中進(jìn)行充分考慮,尤其在布局時(shí)
。
盡管本文所討論的原理適用于廣泛的電源設(shè)計(jì),但我們?cè)诖酥魂P(guān)注直流到直流的轉(zhuǎn)換器,因?yàn)樗膽?yīng)用相當(dāng)廣泛,幾乎
每一位硬件工程師都會(huì)接觸到與它相關(guān)的工作,說(shuō)不定什么時(shí)候就必須設(shè)計(jì)一個(gè)電源轉(zhuǎn)換器。本文中我們將考慮與低電磁干
擾設(shè)計(jì)相關(guān)的兩種常見(jiàn)的折中方案;熱性能、電磁干擾以及與PCB布局和電磁干擾相關(guān)的方案尺寸等。
文中我們將使用一個(gè)簡(jiǎn)單的降壓轉(zhuǎn)換器做例子,如圖1所示。普通的降壓轉(zhuǎn)換器普通的降壓轉(zhuǎn)換器圖1.普通的降壓轉(zhuǎn)換器
在頻域內(nèi)測(cè)量輻射和傳導(dǎo)電磁干擾,這就是對(duì)已知波形做傅里葉級(jí)數(shù)展開(kāi),本文中我們著重考慮輻射電磁干擾性能。
在同步降壓轉(zhuǎn)換器中,引起電磁干擾的主要開(kāi)關(guān)波形是由Q1和Q2產(chǎn)生的,也就是每個(gè)場(chǎng)效應(yīng)管在其各自導(dǎo)通周期內(nèi)從漏
極到源極的電流di/dt。圖2所示的電流波形(Q和Q2on)不是很規(guī)則的梯形,但是我們的操作自由度也就更大,因?yàn)閷?dǎo)體電流的
過(guò)渡相對(duì)較慢,所以可以應(yīng)用HenryOtt經(jīng)典著作《電子系統(tǒng)中的噪聲降低技術(shù)》中的公式1。