計算機視覺、機器學習、自然語言處理、機器人和語音識別是人工智能的五大核心技術,它們均會成為獨立的子產業。
1.計算機視覺:計算機視覺技術運用由圖像處理操作及機器學習等技術所組成的序列來將圖像分析任務分解為便于管理的小塊任務。
2.機器學習:機器學習是從數據中自動發現模式,模式一旦被發現便可以做預測,處理的數據越多,預測也會越準確。
3.自然語言處理:對自然語言文本的處理是指計算機擁有的與人類類似的對文本進行處理的能力。例如自動識別文檔中被提及的人物、地點等,或將合同中的條款提取出來制作成表。
4.機器人技術:近年來,隨著算法等核心技術提升,機器人取得重要突破。例如無人機、家務機器人、醫療機器人等。
5.生物識別技術:生物識別可融合計算機、光學、聲學、生物傳感器、生物統計學,利用人體固有的生體特性如指紋、人臉、虹膜、靜脈、 聲音、步態等進行個人身份鑒定,zui初運用于司法鑒定。
隨著科技的發展,生物識別技術已經成為個人身份識別或認證技術的重要方式,人臉識別作為生物特征識別的重要分支,它的無侵害性和對用戶以zui自然、zui直觀的識別方式更容易被接受,然而,已有的一些機器學習算法大都使用淺層結構,而淺層結構的網絡很難表示復雜函數。同時,以往提出的多層感知機器雖可以表示復雜的函數關系但又由于沒有很好的學習算法。近幾年深度學習技術被業界廣泛認可,并在各個相關領域都取得了突飛猛進的進展,特別是深度學習技術在人臉識別領域的應用,在今年的安博會上,各廠家也紛紛推出人臉識別技術。隨著市場需求的不斷變化,不同的應用場合,人臉識別技術也根據需要開發出各種各樣的產品來滿足用戶的需求。